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PERTURBATION METHODS APPLIEC TO PROBLEMS
IN DETONATION PHYSICS'

J. B.

Bdzll

Los Alamos Scientific Laboratory
Univeraity of California
Los Alamos, New Mexlco 87545

ynfinement are discuscsed.

A thenretical study of an explosive whlich releases a cmall
fraction, 6%, of 1ts total energy via resolved reactiosns is
presented. Two 3eparate problems are treated. rirst, a
time-dependent one-dliensional unsupported detonation 1s
considered. It 1s shown that to 0(48) the detonation i3 a
reactive simple wave. The particle velczity prefiles are
calculated for a mcdel explosive.
edge effect for a stcady-state semi-infinlte unconfineu
detonatlon 15 consldered. It 1: shown that tne near-fleld
flow 1s dominated by the Frandtl-fleyer alncularity, whereac
the far-rield flcw 1: controlled Ly the reaztivity and
streamline diverygence. The shock locus, svnic locus, and

) niting characteristic are calculated and the effect: of

Secona, tne aetonartrion

I. INTRODUCTION

Detonatlon physics 13 primaril-
c¢s..cerned with understanding the rataer
c:mplex suitJect of reactive nonlinear
hydrodynamics. As a reault cf thls, the
nuimber of analytic solutions deacriblng
detonatlon provlens is very small. In
part, this has led to a heavy rceliance
on. nurcrical solution methodes for these
problems. By thelr very nature, Lhese
riethody are only maryinally asv’table for
paramcter variation atudtes; Lhue they
often provide Jittle or no guldince ags
t., the nature of the governing phyulea.

For n small clasn of jproeclem, ana-
lxtical solutions can be [ouna anlng:
ricdern sincular perturtatlon tnvory.

T:re purpose of thla paper 1la Lo Jdoeserlbe
the underl:ying scallny: prineiples of
tiwese methods, and Lo show how they fll-
ter the relevant phyctaoe from the full
fraverning equationg. A examplues, we
c¢onrnlder two problems that heve as n
s=all parameter 8%, the fractlon of the
tatal cnergy released via resolved
reactinng.

In sectlon 11, we examine o one=-
dimensieral tipe=depondent detonation,
we shew Lhat to Toweet order In the per-
turbat lon (8), th evolutlon off the

detonation pro-~eeds as If 1 were 1
simple wave wil. independ variaties a
and 8t. A atraishtferwarce wirllozaticon
of the method of characterlstics tn the
resvlting equatiens alliows 46 to Ssudir a
wlde ciass of zlmple wave nicblems.

In section III, we wexa.iln« - atesiy

two=-dimenslonal detonaticn. We sihow
that for an unconfined seml-infinlte
detonation, the physical ajase Sivider
1taself 1lavo two distinev »<<ions. very
near the edpe (inner protl=:=) tne fios
io nearlY a rreeugnvenctive expantlon
with x/8'" and §¥'y beln: tue lndcpen-
dent varlables, where y L5 tuce distanen
inte the charse trem the cacse. Away
from the cdiye (outer prat Lom) tae o=
activity and sircarline dlvermene on-
ter equally with x and 3¢ eelio e in-
dependent vavlables, We de-ormine Lhe
ahape of the shock and aente joz2l -me
ntudy the effects of conf!lioment on the
detonation.

II. A TIME-DEPEADENT DETCLATION

A. Stntement of the :rollem

Mur-l. of the |‘x;\l_‘rll '.—- Uiy
been perlrormd on explo. towere Jde-
simned Lo memiure the parqs teps onn=
Lalned In the Chapman=Joneiet theory,
When applled to uncupported detonatton,

Linat nave

"~
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this theory makes the followirg as-
sumptions: (1.) Initially the right
half-space (x2 0) 1s occupied by a qui-
escent fluld at a density p_ which is
in a state of metastable ch8mical equi-
librium; (2.) At time t = 0 a piston,
which 1s originally at x = 0, is impul-
sively brought to a velocity u® > 0 and
then withdrawn producing a planar shock
wave followed by a rarefaction; (3.) On
passing over the 1initially quilescent
fluid the shock inltiates an instanta-
‘neous chemical 'reaction, of specific
internal energy q(1-62?), which then
supports a classical detonation with a
pressure P® and a velocity D%; (4.) In
terms of this model the parameters p_,
P*, and P* completely characterize tfe
flow. In this section, we willl consid-
er the consequences of releasing an ad-
ditional small amount of eaergy qd? to
the flow on a relatively slow time
scale.

We limit our discussion to the fol-
lowing conatitutive relatlions: a
polytroplc equation of state

E=cirLeqetan -q,

(2.1)
where E is the specific internal energy,
? 1s the pressure, p 1s the density, v
is “he adiabatic exoonert, ani a atate-
independent square-root rate law
(0€2851)

r o= k(1l-2)¥2, (2.2)
where k 1s a constant rate multiplier.
veglecting all transport processes, the
field equations for our time-iependent
one-dimensional flow (shock fixed coor=-
dinates) are

B2 1n(F*/p"Y) = yi g,'_;; (2.3)

g%.P‘ t yp'c”’ g%.u‘ - %%l p“8ip*

(2.4)
B2.a =, (2.5)
where
D2 9

R P (I R SN Y

Bo. = dr. + (0und. (2.6b)
¢ = fo(t)ae - x. (2.7)

In the above equations t° is the scaled
time (kt), ¢° is the scaled distance co-
ordinate in the shock frame (y+l)kg§/yd%,
u” 1is the scaled particle velocity in
the laboratory frame, ¢’ 13 the scaled
sound speed, p° 13 the scaled density
v/(y+l)p., and 0°(t“) is the scaled det-
onation eelocity. To simplify the no-
tation, the primes will be dropped.

Equationa (2.3), (2.4), (2.5), the
initial condition of an impulsive pla-
ton, and the sntock conditlona serve to
oompletely describe the problem we wizn
to consider. In the limit § - 0 the
solution 1s a simple wave Khown as i
Taylor wave. e wlll show that fw 6
sufficlently srmall the solution Iz a ve=-
active simple wave.

B. Heactive Simple '‘ave

Since we are conslderiayg a ayoten
for which 8 1s small, 1t !s natural -
seek a =oluticn to the ztatod protlenm

- -y - Ny ma - ] - ~d a - -
a5 8 rogular acymptotlics gnponcion L0008

use % + U e S+ S e L (2.3)

o m d9 4 80+ 83SD 4 ... ers,
(2.9)

A straightforward calculation glve: un
~ t for t 1arge. Thus, lor tincs
greater than §= Eq. (2.8) no lone=r
gives us an aaymptoutle rerresentatlion
of the snlution. Examlnin. tre ,sovern-
ing different!nl equation:s, we flnd
that the sccularity in ¥ arizes be-
cause the cquations for the perturine
tions are linear. It follows that to»
long times they do not contaln the non-
linear convective effects that bound
reactive prowtli. FPhyaleally, we can
underotand th!.: witih the ald of the
Master Equatlion (1), It atatea that the
growth of the uhock preussure is the dif-
ference betweon the rate of eneryvy in-
put of the rcactlons minus the rate of
ensargy losu to the followlny flow,
When the flow 1o sonic, as it ls 1n our
unperturbed flcw, the loss rate la avpra.
Introducing 8t 20 a tilme scale Into tne
Master Fquaticn leads to bourded cnlu-
tions (1). This supproests that in ad-
dition to t, we uhould lnclude 8L aa a
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tioe scale. Using the method of mul%i=-
ple time scales, we will chow that a
bounded solutlon can be found to cur
differential syatem (2).

We begin by formally integrating
EQq. (2.3) and then using the results to
rewrite £qs. (2.4) as

B me e 2l e (Vi

| |
' g-J%.! d:o)o oe"), (2.10)
where R‘ are the Rismann variatvles
2
L4 "':I' c tu (2-11)

and fdt_ denote: an intecral taxen alongs
a partiale patii. Fzilowing in the aplr-
‘vt of the multiple time acale =eti:d, we
introduce the time s2aiva

y e gte ez, -
(2.12)

and assume that Eqs. (2.7) and (2.:) de=-
pend explicitly on all or these ti-es ad
w“ell as ¢{. The cnaracteristic de:r’vae-
tives become

Y—EID‘ sw*ll - (U QJ‘—

+ s[g—yw - (J“:c‘“)ﬁ]o {2.13)

Focuring ouwl atieoniion sn ot nege
ative niemann varifatic, we rind t:a2t at
0(1) Eq. (2.10) i3 eanlly interratci.
Since al}! the negative characteristlices
emanate from a rchlcn whone atate !s at
most speciflied Ly the varialles y", 4,

RO o Jdo00 a0 L, (2.14)

At 0(8), we find

HN . 'ym(}";:'")’ AU ANy
(2.15)

To avoid the secular tetavior in Eg.
{2.15), we set
H = goyd, ...y, (2.:6)
Proceeding to 0(4?), we get
H? = (4, ¥,
r ilr . ..
' v'h-I)I["(}’ * S—c,‘.'-:"' "'o)]"‘ '
gor A
(2.17}
where
55, . ?%T [1e- W20 FRLE

and we have “aken

ady . .
* - Y
o $ - SRY

to avold the eviwaraniot  J o4 08wl arth.
UBIng tuese rezuan., tne ¢ Liave
Rlemunn varfatles 2an te #ltten o)

H? . 2uW e MD (¢.205
#I’ e 2V . .ll(.‘.ﬁo '"-. ':_-9". e,
(e.2i}

Requirin: Bq. (2,21) wo pe=aln Lilnde.,
we are foroed Lo oaet 3ol 3@ W
which given

N® = M0 Y, KV e QOB ey

(2.22)

Therefore, to 0{48) the T w !" A cimple
wave for tne senles % aps AN

Turndmg vur attention o She oquie
tionn governine the yuiizlive H.\ru.“
varlatles and artiorariils et ine
and ¥ = 1, we rindg

1 -
(1-d5) , o= 0

uﬂ ] )] K|
(Tv‘"' )l 'ﬁ'!o ‘

y € X§
(2.23)
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Solving Bq. (2.23) subject to the rele-
vant £y and initial conditions,we
find
 » Jam(f)- Sreern().

osgs?
e . #o ;“l" . w'ln(- Ly

Vo RERTI

Sabstituting £q. (2.28) into Bq. (2.0)
gives us an saymprotic representation of
she solution which i3 7slid aver %re en-
=ire physioal region.

c.

The effects 52 a 2¢8ll Tractisn
:? resolved energy releaie CAN RANVO IR B
setonation can btest be¢ apfrezlateld 3
2ongidering an exacple. da a«e

{2.2v)

{2.29)
(2.24)

9% o 3.8 /i3, v 8 2.0
4 = 0,06 s k@ 2 pat,

Tigures 2.1 and 2.7 :9opavre the zarcicle

{ 1
29 ! ] q 47 ) ]
a{mm)

Fin. 2.1 = A comparicon of particly vue=
aeity va diatanze grofile: fov o “hape-
rnn-iuu?uut detanation (==) amt Fy.

-.l: ) _)-

vianis)

o9 | | 1 :
0+ 220 236 292 26
wmm)

Filg., 2.2 = See ¥ig. ..

veLachty praTiles . tne feferenie Jlae
8wl uug ks wiE cerdeay b . .
e Of pun. Suwe Teatuipre: 0 the Titw Sue
serve Jpesia. atientlion: - adling

orly 4% of ire “-iml emer:, viw oy 2l
resctizn reduat: In 3 77 Increndce on
the particle velazity at Lie ARUCE, ani
(2] afver 36 w3 of run, *.¢ Flnp. 2%0nt. =
2TAt® hai not Leen Feditel. Therefire,
cranges of 0747 Lip she “4atanall.n fhcte
gy (f.0., the Chajpman=vts .ct itates
praduce change: of S14Y i ine ahcse
atate. Also, "ne Tatice A dileh tir
steady=a2tate 12 appros el L meadure:

in units of (8 . Lonae jaently, evesn
if only a zeall asoupt 37 “he svallal.c
energy In a detonatlon 17 roLepze) vole
atively alowly, the doviatlisng frim Lie
Chapman=Jougaet rudel wli. te larce,

II1. EDOE EFFEIT:

A. %i!\cgent of She irolles

Conalder a :tehdy deiotation . F
velaelity D profafdt ing ' L0 pasitive
g=directicrn. TlLe cxplosive suppurting
the wave 1: taken % Le Semleinfiniie
with explucive d:curylng %i.c half=apa:e
g ;’0 and & vacuum for ¥ > 0 (zec Fiy.

If we acaume a Chapran=Jousuet de'-
onation, an chacrver pridling w/th the
shook would ace u fiat aloek (y=axla),
along which the flow would bLe exnctly
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HE Products

Fic. 3.1 ~ A scheqdt!ic represzentas!sn of
the detonation edge T fcdt. The rnizds
(b::h C=J and resocived) are driklc Lines,
The Prandil=Meyer Tasn ! veprezentcel :y
the dashed lines.

sor.ic. Pehind the 2%

~
)
r-'_‘.““.u.— Paa “aw? =1
vmyrmesariag v s meY =E ege

singulapity at y = 3,

7z he woaldl zee 2
el e P

- -
- v, ow rr -

Por the canzc 30 3 rezulved reassich
2z2r2, the flax at %o interjestissn T
Lrhe shoek w»ith wne xe3x!: muat a.al: to
lo:3lly decerited Ly tue Frapziiellevsr
singularivy. Thiz rejulres twat tie
flix at the ahosd re zanls at 5 v o,
whish in turn, rejuaices LhAY She mo-ag
Ba/€ AN 2CuUly angie will the peal-ive
x=ax13. Procecding into e exploslve
aling the zhock, he ¢ffeztls 3% zhe
sirgularity diminlan, anld leave ! e
11=4t an undlzturted ornr=dimensional
Fl:w with 8 subscn!s srnovk wi el L
parallel to the y=-3x'!3. In the inier-
vening roglon (= & < 3y < D) the atode
aurt amoothly connect theaye Lwa 145l
with some convex ffcrrm, The purpesze of
this pectlion §o 10 douerile the ciriz-
turc of tha reglon of reactlive flow,
inrluding the deternination cof tiac
shock :thoape, nonlc iveur, and limiting
characteriatic. For the jplereral cace,
the analysis of thls preoblem g Ji8f2-
eu.t., Hhowever, we wili aealn find v:at
ir. the limit of :mall &% (the reiolved
energy rcleace fractlion) a perturiation
sc.ution 1: poaiible. In thia 11s1L,
prigrcss belomes poasslible Lesause wo
are deallinye with a nearly sonice tran-
sonic flow.

B. giollalnlrz Conclierationc
Assurming that a Lrafiport proce
egs¢es CAN be neglected, tne fleld equa-

tions For our steady two~dimensional
plane flow (ahock fixed coordinates) ae

Pelou) = 0 (3.1)

uevy = dop €3.2)

ge2? - c'ysBo = } 38'r (3.3)
[

!'!i - r. (3-“)

where o {3 the density, u “he particle
veiscity relative t- the shock velsality,
P 13 the precsure, ¢ {2 t:ie zound speed,
E 13 the apecific !nterna. enersy, 3 in
the totsl eneryy re.oise iie %o chenmisal
reacsion (D! = 2(y¥a113), r &3 the rute
of resctior ani ¢« ¢: the rexctliin frig-
ress verialoe (' ® 1 At tne enl oP re-
action). Zlince we «'un Tt zmudy tne
general fematures :f tine floiw, we [lmit
sur direuarirn U e Tollituvine rinatie
Tutive relaticns: A FalyeiTopde £Rsatl
.l atatce

EedyEoqercianr -y,

e y 28 tne AJLBTALLY UXFCHhEn., uihilL
8 statc-indeyenlent :juare=riel rate
law

roe k(lea)V,

where k {8 & conastan rate =i
After a stralghtlrrweard %ans

(see Serrin {3)), Equx. (2.2;
becone

He 3 lul? = dor, (3.7)

where H = E ¢ P/p ani we :ave asgunmed
the flow akeald uf tie akodd !s boin
homoenergetic and at -erc pressure,and

¥(E)= 0 (3.8a)
A2 o s
@)% - Ry o

where T 1s the temperature ana (0o ®
(3u_/3xY=(3u_/3y) 1 the worticlty whic:
18 Ydircsted intoe the plane af the parcr.
Using Egqn. (3.2), (3.3), Ind (3.7) we
can rewrite Eq. (3.1) as

du u du
(c'-u;)5;£ - ZuxuySEI + (c'-u;)syl

= (y-1)qé’r - U uyf. (3.9)
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Equations (3.6), (3.7, (3.8}, and
(3.9) serve as the working equations for
ou™ analysis. They ore partial differ-
ential equations of mizxed type. In re-
gions of supersonic flow, they are of
hyserbolic type; whereas in reglions of
suZsonic flow they are of elliptic type.
Pormulating the bcundary value problem
for such a nystem requires some care.
The Tricomi equation

g8 _¢+xE =0, (3.10,

X yy

whish is the simplest eguaticn of mixed
tyse, serves a8 a gulde (4). It zan bve
shcwn that Aif the potential 2 13 specl-
fied along aome smooth curve in tihe aube-
sonilec region (x > 0), which originates
ans terminates on the sonic locus

(x = 0), and also alonz a characteriztlc
in the supeilsonic reglon (x < ), wkizh
13 Joined to one of the end points ¢
the boundary for x > 9, then k3. (3.19)
ha: a unique solution. Tranzlated to
ths problem at haand, = are led ¢ re-
quire that: (l.) rleng the shock {{ree
bc.ndary) both the normal and tangential
Ju=p conditions are satisfled (curve 1);
(é.) at y - -= the streamline flcw i
trat of the corresponiing cne=dimenclon=-
a. prcblem (curve 2); and (3.) al:crny. the
cr:ss characteristic encirecling tue

Parwdet _Macpam adme:. Vqmisnan rima PV A
cm mirarm Tk Pe waliemmr ey T emT maw

» =
tras of an inert almple wave (zurv2 3).

A Ichenatic representaticn of the tound-
ar: is shown in Filg. 3.2. From a phyc-

ca. standpoint, applying thede bdo.nduiy

corditions seams guite natural.

Of theae, the shoek conditicu: need
roe special consideration. We Legin by
gof:ning the equation for the shocx

ocus

x = -y(y) , (3.11)

ip terns of which the tangent , t and the

| il D

Filgz. 3.2 - A schematic repreacntatlion of
the boundary curves for the edre cffect
on a rcactlon zone; (1.) the ashock, (2.)
atreamline at infinity, (3.) croaz char-
acteriotic. The dushed line repreacnts
the aonic locu:.

normal, n to the shock surface are

e e Y @) oun
ne= ((l M 35 .L)/(l +(g—§)’)‘”_ (3.13;

The Jump conditions across the shock re-
quire that the following relaticns hold:

P lusn), = p (up), (3.14a)
(ueg), = (uog), (3.14b)
B, ¢ o, (uem)} = o (aem)?  (3.14¢)

Since the satate ahead of the 3hcoe 13
quiescent in the latoratory frace, E4c.
(3.14) may te rewritien ag

] . \2

0 1 Y i {1.

P, - Y¥7 T v+, TmilesT)\It J))
{3.1

Bye ° (ux+ * p)gg 3
e oH) - |
' Y_i,[\/l-u-s’) (+Gf)I)J/(*(J—) )

\3.15¢)

w)
(%))

)
~

v

\r
)

~

Using the recult of Hayes (5), the vir-
ticity Jump acrosc the ahncik 1ico

a (1-p/p,)? D(du/dy) (d?y/4;7)
[}
<+ 272 »
0. /0, [1+(dw/dy)?)
o4 (3.16)

wherc the flow ahesl of the shonk 1s fr-
retational. Equatlonp: (3.15) nni (3.1
provide all the neveszary boundary Cone
ditions along the chock. Unferiurnatel;,
the shape of the :s:roc¢k 19 nut kniwn a
prio~d, 30 that at thls polnt 1n the
er:lculation, they are of :nly linited
uscfulness. 7The 3laope at the sounlc
print on the shock can te calcuicted Ly
subotituting Eqz. (3.15b) and (2.15¢
into Pernoulll's law [¥q. £3.7)], and
setting c? = |u|?. We nbunin

(3.17)

d) (y2-§1) 1A
(a! R
y sonie v ’

where for later convenicnce we lntroduce
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qv . (1-:)(" ) (3.18)
dy 3% sonic
Since we must require that tne shecck

shape !s a smooth convex function, Eq.
(3.17. serves as an upper bound on the
shock slope. Recalling that the energy
releaze fraction 1s &%, Eq. (3.17) shows
that < ne shock slope i sensitive to the
amoun- of resolved energy relesse, par-
ticulzrly for small values of 6%, From
the v:rticity Jump condition we find
that o, 1s progorticnal to the produc:
(dy/a. ’(d v/dy Aasuning that the
shock ~urvature, d3y/dy?, 1s also 0{¢)
then . 1s 0(8%). Since the product »oT
decrez3es for a particle as 1t recedes
from - he shock, Eq. (3.3a) requires that
the v:rticity alsc ilecrease, Therefore,
it se=ms likely that fer & sufficlently
small we will be able to consider the
flow =23 irrotationail.

Zn the analysis cf the flow equa-
ticns, we wil) find It ccnvenlent to te
in a :-Jordinate system in w*‘Au the flow

at trh: edge (v = C) 1s directed aloun, a
sing.: coordlnate axis. We sclec: the
direcslon of flecw at the scnlc golnt on
the z..2cx as our new x-azxls (x| ) wivh
the r:w y-axis (y ) vtelnrs rewnnndibul
to I, Beeoaune tle Tl a
Prani: i-Meyer exranalicn, the scnie lceucs
coinclies with y, at y = 0. In this
sy3ter , Lhe velofitier are

Pliw 45 Yanal.w a

= - u, sinw (3.192)

co -
P Sw uy

L, * u, sinw + u (3.19b)

yw x y COoSw

with <he rotation angle given by
sinw = &/y . (3.19¢)

In th:se new coordinates, the shock ve-
locit, jJjump conditions are

. (y+62)
YO+ 457 (v7-877(1-¢)7]

foroeo - st

=

__,y*fsﬂ’\/(mi>=-(1»sf)<v‘~wd’>fl-c>‘]
(3.20)
.8 [aes)riviashH - e)]
sy “7715TT'_—7__' aws
§(y+6%)e
(y’—&z)V’[(Y*GZ)-52(1"E)] (’3.21)

(3.22)

and the velocities In Eqs. (3.20),

(3. 21)! and (3.22) nave been scaled ty
Diy23-62)®/(y+1). In the following sec-
tions, we will use the method of matched
asymprotic expancicrne to find a soluticn
to the stated proolem in the 1limit of §
erall. To simplif, the notatlion, the
subscript w and tildes will be dropped.

C. The Quter Froblem

In applying a cervurtation method
to the solution of a protlem, there are
t=o essentially unizue zteps. The first

1z the determinaticrn of tie forr of the
expansicn of the derendent varlactle In
terms ¢f the small .a"a“e er ne 2ele
crd ic the scaling ty th .mall Arat-
e.er of the indepernient variatlie:, Far
trhe problem we are :lnslisring, o
shock Jump conditisrs arcsiz Jour ?
tat an expanslion ¢f the lepenacont. vur-
lzvles in 1nterr_‘ rowersz 8 & chnzulz e
vried. Regulirines t..3t any <olutlizn tihast
W benera:e Ineclude 3 cconlz trans'ilcoe,
trne effects of reastlivicy, and soreis-
li:e d;v:rren Cw 83t s That thne Ine
vendeat variabie. i ¥ &n2 &y.
"*all', we can unisnItan: The
2 the indepeondine worfioilol Lo
Fzr rrem the edge wo gan exgedt
t%uce rrc~ the chu2, locul %o t Eis
lce te be near ti: undizturted cne-
dimensional value w.lch 72€2 a3 X.
S8ince the reaction zzne ic only silghtly
subsonic In the sma’. § limlit, the flow
av the shock change:s from sconlc at the
edre to only slightly sutoznic at grest
distances from the edge. Therefore, the
scnic character of e f£low 1s nearly
that there is

e near fron

little to differentta T
ale 6y has this

trhe far flelds. The
property.

We proceed with the perturtation
solution by assuming that the dependent
varlables possesc tiie followlng asymp-
totic expansions

4
e
the same everywhere o
t

') 2 (& oo
u, = 6ul + 67U+ (3.23)

uy = suy + 62D+ .o (3.24)

c? =1 ¢+ §(c)V 4+ §2(c2)? 4+ .0

L
o 0. W 0 @ (30:.))
_9 = _J__ + 6(.‘(_) + 62(-9) + e
Pyl e 0 (5.20)
A= A 0y s2,@ 4 .. (3.27)
e = c® 4 5e® 4 52eW 4 o (3.28)
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where ¢' has been scaled by 0¥ (y2-82)/

é:;l)'. zhe independent variables are
en to be
2 = YLK o (3.29)
plyl-42)\2 )
yo . ‘__(1:.1.&_ y (3.30)
D(yi-63) 2

(The asterisks will be deleted from our
notation). Since the reaction zone we
are considering 1s of finite length,it
is necessary to transform to 1, y as
the independent variable set to insure
that the amount of energy added in the
resction zone 1s compatitle with the
value of P. The differential operators
are thus replaced by

L
%; - (g_:‘_ R G%w’ )g'i' (3.31)
O P (LI I ey
(3.32)

Substituting Egqs. (3.27) and (3.6) in%o
Eq. (3.4) and settinz %o zero the terns
of 0(1) and 0(48}, we et equations f:r
A® and 2

o) B iamw (3.33)
0(8) %m - g—;—“ + %A‘“(l-u“‘)"” .
(3.34)

Equation (3.33) can easily be solved,
yielding

™ e 1o [1-3(xg-x)]2, (3.35)
where x_(¥) 1s the shock locus. Before
we can Integrate Eq. (3.34) uﬂ must te

found.
We begin the anal;sia of our syatem

by first eliminating c® by applying
Bernoulli's law [Eq. (3.7)]

0(s) (3.36)

0(87) (*)? = (y-1)[u2 - F(u)?

(e")V = (y-1)uf}

1 1l y+ A
- Bt 4 Lim ]
(3.37)

Using Eqs. (3.28) and (3.32) it follows
that the vorticity jump 1s 0(&8'). From

the definition of the vorticity it then
follows that

]V
o) teo (3.38)
W M aum
o B
3.39)

daking uze of Eqs. (3.33) through (3.3%9),
we find that Eq. (3.%) becomes

0{8?)
™ Du';" 1 EY 1
x0T aaen v AR T
(3.40)
0(s?) o
wfa® Yy e duy _ T ooy
Wi el o) [ :("'a?';
- -;D 3u
-3 e e )
@ iy : W
2 e du Yy @ ? )
ey et el e
=1y W 3u$
* (v*'i')“x o SRR

Plus higher order ‘'erm:, =Hxpaniin: *:a
sh.~k condltion: |fa3s. (*.c00) anz2 (3.z1
we get

o8) uP, ~ IATI-TN (3.52)
AL (3.43)
0(s?) u:',._u:’ .- ;:5-(;--:"';..‘;’+ (3.4n)

o, - (1$l - ), - %c“‘.(B_-’!S)

The remaining boundary e:inditicn; re=-
quire that the flow apprcach the one-
dimensional limit a: J --w and a franitl-
Meyer singularity at 7 = 2, x € G,

The lowest opder equatlons [<3a.
(3.38) and (3.Bc)j can b2 intesrated
without difficulty. 3ince ¥ 15 in-
dependent of A, Eq. (3.47) c¥n ke
treated as a fir:st ordepr pdinar; J1f=-
ferentlal equation (C.D.E.) In . As
such 1t can satisfy cnly cne boundary
conditlion (shock conditicn) and the
Prandtl-lleyer conditlion r.ust pe dropped.
This then serven as the definltlion of
the outer 1imit of the full problem:

uter Problem - the system of 0.D.E.
3. (3.007, (3.41), ete.) and the

shoek boundary eonditlans whleh
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together describe the flos far
from the Prandtl-Meyer singularity.

Solving =q. (3.40), we get

au®
R R =1 SR

- %r[x-u-x)], (3.46)

where uﬁt and U ar« unknown functicns

of ¢¥(F.. MNow,”if Eq. (3.46) 13 to be
an accertable soluticn to our reactlve
flow pr:blem, it must nave .he following
properzZes: (1.) u¥ must be real, and
(2.) u'¥ must be equil to zere (sonic
flow) "3t some point In the reaction
zone. These can uc concidered az a
eraliz:: Chapman-Jouguet 2cndition. F
quirins this of Fg. (3.46) &!ves us a
differc:%tial condlition on ¢

)
dey 1oVi-(1-cd)? |

en-
e

LA}

(3.47)

where = = «{(y+1)¥/2y. Integratins E7.
{(3.47) _nd requiring that e¥{3; = o
gives .3 an Impllicit expression far Lhe
shock z_.ope

40)Y o ~ (&} QD\
v voe Ny,

where 2:56 = 1-¢®, Transfcrming Eq.
(3.18) Into the edge sonic-iine-{ixed
coordirztes and integrating, we get a
first z,proximation to the snock locuc

xg = ;%T[tan(§+%) - (1+9) - ysiné

- yln(l-sineﬂ. (3.49)

Therefcre, the first approximation to
the outs2r velocity fleld is

m-}. ..l - - ¢
uy = 5 stne - S0-(1-0¥]  (3.50)

u® =

v 13.51)

- %(1-cose) .

where . = 0 at the shock.

We find that the above solution has
the following properties:

1.) The solution merges into the

one-dimensional flow as
+ <o,

(2.) The distance (along the lab=-

: oratory x-coordinate) from
(0,0) to the lead pcint on
the shock is infinite (for

the square-root rate law).
(3.) The sonic line enters (C,0)

with infinite slope instead

of the required zero :ioge.

A nlot of the shock locus and sonic lo-
cus 1s shown 1in Fig. 2.3. Therefnare, we
find that the cuter sslution agrees wi-h
both, the shock conditicns and these at
¥ = -», but viclates the conditionz a:-
the Prandtl-Meyer singularity. This ‘:z
a substantial shortccming.

*

Golng on to the next order of tne
outer problem, matters becsme evern worze,
Solving Eqs. (3.34), (2.23), and (2.a41)
subject to Eq. (3.44), we find

., 3 = [, 1 -3 ngY) o
uy uys * TYT[(Y 2)(i-81n%) (v+1)

#(csce-1)(cscle - %%%és:nea[1~(;_.,vq

13.52)
o =g, e Y2 [ix-stmgiencs - -_:_}i;L‘?]
] sEISEIRLE RN WY
where
A AL 13,540
&f’ = C(1-zins) + %%%(1-sine);n(:an%
+ -?; cest - 5;”3-(1-::.».9)6

and € is an artlitrary c¢onotans, In whe

L] L] L] T ¥ T

I-term outer solution
ﬂbr o

inm)

St 4
-2_' \! e 1 ) U 1 A
=100.! -69.3 LA K] -7
8yin.m)
Fig. 3.3 « l-term cuter zolutiorn. The

shock locus (upper curve) and the sonic
locus (lower curve) in edge fixed co-
ordinates. The parameter values are

D = 8 mm/ps, vy = 3, and kK = 2 us?,
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limit 5 + -= (8 = ¥/2) the solution 1is
well-benaved. MHowever, near the edge

(0 » 0) Eqa. (3.52), (3.53), (3.54), and
(3.55) all become singular. To resslve
this d17ficulty, we must examine the vi-
cinity =f the Frandtl-Meyer singularicy
in some detall. In the next section,we
formuiz=e the inner limit of our protlen
and shc«# how the singularities in the
outer groblem can be removed.

D. 7The Inner Problem

The problem encountered at the end
of the _ast section is simiiar in prin-
ciple = > that treated by Cole (6).
There as here the singularity arises
because the O0.D.E. beilng studled has
singular coefficlents., However, In ocur
case to¢ resoluticn of the difficulty
proceeis somewhat differently. The
princizal shortcoming of srh2 suter linit
is tha: the 0.D.E.'s which are obtalined
are caj;able of handlingz oniy a very re-
stricte: class of transonlc flows.
Since *:..e reactivity is of zecondary
ioportz-ce near the edge (relative o
the Prindtl-Meyer singularity), let us
neglec= It and the vortliclity for th2
moment z=nd obtain the kernel Transcnlc
partia’ differential :mera.ir zontalned
in Eq. .3.9). The oblect =7 tnls ex, -
cise iz 0 obtain a partla: 4!fferenz!al
equati::: (P.D.E.) which 1s capable of
satisf-inc all of the appilzatle bournd-
ary coriitions near the edice. we pro-
ceed L. introducing a rotential and
scaled :ndepi'ndent varlables

¢ = - x+ 8Mx,y) (3.56)

gex8™V, §owysh . (3.57)

Using Z3s. (3.56) and (3.57) to calcu-
late t=2 velocities and Bernoulli's law

to eli-Znate c¢?, the dominant terms in
Eq. (3.3) yield the equation

39 3% , 3% ,
(religh 3<% 5 " 0 (3.58)
where xe have the conscraint
3(a-v) = 2(m-u) . (3.59)

Equati:zn (3.58) is the model equation
for trznsonic flow(7). It i3 capable
of des:ibing the flow 1n tie nelghbor-
hood ¢© a Prandtl-Meyer singularity in-
vedded in a mixed flow. In fact, the
specif cation of a unique solutlon of
Eq. (3.58) requires that ¢ he given
along <1e shock, a curve connecting cvhe
shock <> the sonic locu3, as well as
the Prandtl-Meyer condition. To detecr-
nine t-= parameters m, v, and p, we re-
quire that the orders of minitude of

the velocities calculated from Eq. (3.58)
match the dominant singularities round in
the outer soluticn. Thiz can be thought
of as satinfying the bounuary ecndilona
along a curve connecting the shock locus
to the sonic¢c locus 1in an order of mavnl-
tude sense. The most singular terms in

*? and d? are

S0 & Q(aVIeV-IN/Y) -‘:;-)-.,. (3.50)

G'u? = O(§VR*V-W/2) F;TV' y (3.61)
30 that we get the conditions
Jovdo = an

Solving Egs. (3.59), (3.£8),and (Z.t3.,
we get

{3.62)

(3.£3)

6 = 3(8VY I a x/5VV T oa sV,
(3.6

u, = 9(8V), 4, " 0(42%). (3.63)
In term:; of the varlatles 8 Eq, (5.4
the pemalinlineg sinesilar Terms in tow J.b=
er '% ana u¥ are

X J

2 . ;uln(-f':_ 2 wy L1né 2 €
i S 01 IR Ll o LU RLRY
2, §31n(-j) + %e’zns . (3.67)

Wwhen expressed in tepns of Eq. (3.Z4),
the dominant terms In .2 outer W anj
J? sre 0(6"P) and C{4¥") respecti?ely.
Using this information as a gulde,
we assume that the {low potentlal can

be expressed as the followlng asyriptotls
sequence

¢ = cwom + §1ns ¢U‘m + §Yo000
+ 5'1"6 o(ll) + 6!¢(2) + 67"1115 @(J'H!

+ 67130(7'4. see (3.68)

which 1s valld for velocitles up to at
least 0(8™') =ince Eq. (3.16) glves

ny d(1-c)?

a, = o(s”) dsel’, (3.69)

For this cet of dependent and indepen-
dent scales, the reactlon progress
variable must be

10



A = ‘v"“ +* QMAM. see,

where ™ and \W? saiisry

2%
T -1
(-3 ]
“," . % A
80 that
("4 ] =
A - i.-x

LAEIE 11 15 FLAN

Int.roducing X =
derendent variables, Fqs.

A4V and §

Bdsil

(3.70)

(3.71)
(3.72)

(3.73)
(3.74)

ac the in-~
{3.7) ard

(3.7) yleld the following cet of egua~

Sirce the higher order equations are in-
creasingly mcre complex, we will rot
consider them here. ULolng so will not
affect the first approximation t¢ the
uniformly valiid solutioen.

Let us now obtaln the boundary con-
ditions for Eqz. [3.75) - (3.8G). iiven
the potential of Fq. (3.€8) and tre
sihock condition cf £3. (3.21), we %ace

€ = SV 4 510 UV 4 4D

* ‘Ullna cud' + esae, (3-81)

Substituting Eq. {3.81) and *he veloci-
ties irto Eqs. (3.2 and (3. 21}, we
ge* ‘*.he shock boundary corililon:

o) (::') 13.32}
0{8™ (1né)") (o_,‘”") . - 3.5
ax . L IR’

L 41N

0!6:’_’_}_ _:rWﬂ)z ;,_E-(hll)
1) + £ +*

0°¢6%3n0) '4-'”) . -
— : :
l(ewi :

where the terms in the =zhcck slope are

a)
.
[
wn

LICLD] (9“‘.' ( '“’)

- ac Dan
b - Y( , &« - 13.87)

o, ),

|p

RERTCT IR

tiore for ¢:
o(sW )
&\ 2
g,(gg ) X (3.75)
0{é8-1ué)
2_fag~% U"')_ .
'ﬂ’(a’n ﬁ : (3.76)
o(87)
3 'aﬁ"‘ao"“) i, bl ¥
-(791)37 3 35 + r\Y*a)(-a—_:
. 1,09 N
BTG e
oga"‘(l )
Y)\2
_ _f ) (3_73)
0(6*"1n6)
3_(agMz 02 | sy
""”ax(i% 5T Ot oy
1 M VY, M) azcy .
+ 2‘(74’1)(57 a—% + W (o]
(3.79)
-(m)?—[- '—"—"’m)’ o+ 28 209
91 3 3% 3i
T T o) nma_q‘”’]
ax 3} 23 3
- ~ {3 feMm\2 a2¢v9
E(Y*l)l(ax ) ﬁT
- dxs

Far from the edye (1.e., =%

flow caiculated
must match that
Calculating the
E3c. (3.50), (3.
and then taking
outer potential

large), thne
for the ilnner grrcilem
of the outer proitlen.
outer rctentla) Srom
51}, (3.22), and [3.%
the lnner limi= :o :%
flves us the matan

potentlal for the lnner preoblen

0 =6V 2357 .

o) b

* %7 - £$%('§)ln(-§)
-5 %(%m(-ﬂw:
! Gzi% Ie%(';)i - %;(1$%y2(-;;”’ 32
+ %? PRI %_?,(1?)”(_9)%&"( )+
11
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1 g+l
+ 3t (& (-y)'!. (3.88)

where we have set the arbitrary constant
in Eq. (3.55) equal to

c - - FRpnit o) - 3] -

Lastly we have the Prandtl-Meyer condi-
ticn at § = % = 0. Thus, the innrer
limit of Lhe rull problem 1is:

(3.76), (3.77),

78); \3 79). (3.80), etc]n the
shock boundary conditions [Egs.
(3.82), (3.83), (3.850, (3.35),
{(3.86), (3.87), etec.] , the match
into the outer problem [Eq. (3.88],
ard the Prandtl-iMeyer aingularity
which together describe the flow
nenr the edge.

Finding the solution of Eqs.(3.75),
(3 76). (3 77); (3 78). and (3 79) sub=
Jecs Lo the azpropriate boundary condi-

tguer Problsm - the system of P.D.E.

ti;nsliu stralghuforward. We obtaln
o™ - X (3.89)
H#V .o | (3.90)

Using these results to simplify Eq.

(3.30), we get

(3.91)

Equation (3.91) 1s an inhomogeneous
transonic P.D.E.. Finding an analytic
solution to 1t subject to the shock,
matah, and Prandtl-Meyer boundary condi-
ticns 1s not a simple matter. Since the
reactivity s not a dominant effect near
the edge, we will first examine the
horogeneous form of Eq. (3.91). Tne
sirplest approach is to seek a similar-
ity solutlion to Eq. (3.91). The draw=-
back with this method ic that one may
no. be able to gsatisfy all of the bound-
ar; conditions.

- (12t ""

The most general similarity solu-
ticn to the homogeneoua form of Eq.
(3.91) 1s that colution whioh ls in-
variant under an infiniteaimal one-
parameter Lie group of transformations.
We find

¢, = ~(-§+b,)"""*a(a) + (-§+b,)B, + B,
(3.92)

%

. (Y417 (<F4b,)" """ () (3.93)

-z A1) 4 b,
(=§+b,)"

8 (3.94)

where n, b,, b

» By, and B, are con-
stants and G(s

satisfles the 0.D.E.
(G°-nts?)G”” + Yn(n=-1)=aG“

- 3(“‘1)(3“’2)0 - 0 . (3-95)

(S3ee Bluman and Cole (8).) Setting B,,
By, by to zer%d n=5/4, and assuning
that b, = 0(8¥’), we find that Fg.(3.93)
uatinries Eq. (3.84) to within a iis-
tance 0(8¥3) of the shock.
the singular points of Eq.
find g Prnndtl-leyer Bingularity at
=0 =0 (i.e., s + -=) when

b, = 0’ at the edge. Taking b, tc be a
runction of y which behaves 11ke .
(y+1)yV? near the edge and never
csading 8(6"') far from vha edge,
sonic line leaves the singularit:; alcng
the -y - axis as required. Sincs

b, = 0(8Y?) the error made in Eq. (3.31)
is of higher order and will be rezovcred
a8 the higher order equations are coaa-
sidered. Fortinatelv, for n = 5/i the
soidtion to Eq. (3.95) can be fcund in
c¢looed form (9,10)

¢, = g PP (—}l)"'(eh;—"n%).
(3.95)

where a is an arbit:rary scaling constant

(Be+1) (-ng - - 208 .

Therefore, we find that an analytic
solution of the homogeneous form of Eq.
(3.91) oan b¢ found that satisfies both
the shock ana the Prandtl-Meyer toundary
condltions.

Analyzing
(3. 95‘ we

ex=
the

(3.97)

Finding a solutlion to the inhomoge-
neouc form of Eq. (3.91) i3 more difri-
t. One possibility is to expreas
] a3 an infinite power serics in (-3)

ey (3.98)

+ £(=-9)'r (&) ,
v v

with the v's belng selected se that the
inhomogeneity in Eq. (3.91) 1s accounted
for. Proceeding in this fashion, we
find that the f (£)'s satisfy an inhomo-
geneous hypergeometirlic equation hose
homogeneous nsolutions are termlnating
serics in £. Therefore, as a practlical

12



Bdzil

matter, the £ (£)'s are obtainable.
sonic locus c3mputed frcm the inner
soluzion, ¢™¥ = ¢, + (-F)'Vf L\ (s), 15
shown in Fig. 3.5° Now, it Bav {3'98)
is ts be a useful inner solution, 1t
must be valid for § + -«, Clearly, any
finize sum does not have this property.
As & alternative, let us consider the
exprassion

The

) T
n-y-l

- %5, 1;-& a2 (y+1)YV (-3) ¥2(3.99)

gy =g 4

as a possible approximate solution valid
fcr -» < § < 0. The motivation for se-
lecting Eq. (3.99) is that it ylelds the
same X - velocity component as the match
potential of Eq. (/i.88) and in addition,
satisfles the shoc: ard Prandtl-Meyer
conditions. Substlituting Eq. (3.99)
intc Eq. (3.91), v: find that ¢ satis-

fies -
] ? 2 1
- (y+l)§¥ sig + %§¥ - - %%% X ~-R,

(3.100)

wherz the remalinder is

R = B a®(ye1y¥ ()@

‘ [Ha'('.gz)%(%‘*l)] . (3.101)

A_trough 1t would be difficult to get a
rigcrous error bound on |¢¥V-p!, we can
get some estimates of the degree to
which ¢ satis’"ies Eq. (3.91) in a glo-
bal sense. Writing Eq. (3.100) in di-
vergence form and then integrating over
some closed region @ in X,§, we get

1(au)? am]

mef-1 Lid + de

f— [- PG ¢ L e -
-J‘J‘[H-}- i+ R]didy, (3.102)

Q

where m 1s the outward norinial to the

bour.jary of @. We first consider the

reg.cn @, near the Prandtl-Meye. sin-

gulerity (see Fig. 3.4). There we

reaclly find that the source due to the
Prar.itl-Meyer singularity, SP.

= ofsin*e
Spn o(coa’ﬁ)'

ia sironger than the c¢ffectlive reactive
source .

[flr 5 sl - ofe a0,

(3.104)

(3.103)

Fig. 3.4 - Reglons of the flow over
which the glotal accuracy of the flow
¢ 18 examined., @ 6 15 the neighberhood
of the P-M sinzuldrity. @, 1s the re-
glon of subsonic flow. .

in the reglon of the singularity. Fc-
cusing our attentlon cn region@,, we
find that

[fndidy-o ,

f3.105)

when the lower boundary (soniec locus)
1s taken as elther the sonlc locus for
the near-fleld homogeneous flow given
in Eq. (3.96) (f = - 1/3) or the scnic
locus for the far-fileld flow given in
Eq. (3.88). Fcr any other lower Lound-
ary of region@,

1]} dxdy
L |
ffn dray
Q,

Therefore, ¢ represents a reasonable
approximation to Eq. (3.91) in a gidbtel
sengse. Comparling the inner sonic locus
calculated via Eq. (3.98) (one term pas:
the homogeneous solution) to that calcu-
lated via Eq. (3.99), we find little
difference in the range -0.8 < § < O
(see Flg. 3.5). Thus we conclude that
Eq. (3.99) provides a reasogab}e anprox-
im&&ion to the velec:ity 69Y/3%.  Since
°¢ ~‘ax contributes to the velocity at
0(é )y, 3rd whereau 3%%/35 contributes
at 0(6¥?), it follows that the boundary
terms in Eq. (3.86) that have been
omltted will not influence the solution
up to and includiny 0(8Y?) in the veloc-
ity. If a solution valid to 0(&¥") in
the velocitles 1s desired, the equaticn

= 0((-§)"?) (3.106)

= 0((=F)' V), (3.107)

12
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-0428
[
]
=184
-.'." 1 L 'l A 'l
=0.502 -0347 -Q193 =-0039
dyimm)

Pig. .5 - A comparison of the inner
sonlc locus f8 calculated with the flow
or EQ' (3'96) (_.—)l Eq- (3-98) (—)l
and Ez. (3.99) (- --) displayed in edge
fixed 200riinates. In all cases

b, = y+1)Y'% . The l-term outer =hock
logus (upper 8urve) and sonie lccus
(lowe» curve) appear as refsrences.

The perameter values are D = 8 mm/us,
Yy=3, kw2us, § =0,1.

‘governing ¢® must be found (a simple
matter),; and Eg. (3.9%L must be dis-
carde: in favor of a that satisfies
?llagf the matoch conditions in Eq.

3- :-

Summarizing, we find that the ilnner
velocities [L.c., Eqs. (3.89), (3.90),
and (3.99)] have been calculated up to
and ircluding 0(8Y?). To this order,
the s>ock locus_1s given by the l-tern
outer solution [Eq. (3.49)). However,
probatly the most importanc result is
qualizative rather than quantitative.
We fird that the features of the inner
flow Zepend on §¥'y and thus can pene-
trate well into the explosive,

. The Composite Solution

~he outer and inner solutions
found in the previous sections are
valid over only restricted regions in
y. Tz get a uniformly valld asymptot-
i¢c exzansion of the solution, the two
limiting solutione must be matchcd 1n
a reglon of overlzpplng validity.
Follcwing Van Dyke's matching procedure,
we exyress the outer asolution in inner
varia:les, the inner aolution in outer
variarles, and then match at each order
in § [11). The composlte expansion ia
then “ormed aas the lnner expansion plus

the outer expansion minus the terms
that are common to both in the coverlap
region. Fegalning terms up to and in-
cluding 0(8Y") in the velocities, the
composite velocity expansions are

u, = § %{aine - [1-(1-A)V’]}
e 1 e dedy }c-“
- on 32 o e (-
V2
-8 1Y (5w
s (%) -9 (3.108)
u, = -8 H1-cose), (3.109)
where the match requires that
W
o= '(v}r)'m: . (3.110)

To this order the shock locus 1s given
by Eq. (3.49).

Equation:s (3.108), (3.109) apnd the
required auxlliary equatlions constiute
a full aoluti-n to C(8Y*) of the tound-
ary vealue prcilem posed in part A. of
this section. Using it we will ncw de=-
termine ecme of the sallent features of
the flow. 1In all of the examples, we
will take the function b, appearins 1in
the similarit: vopiahlae *n be

[74]
b, = &V —slr-)k YH' tanh ('I(T'll')'g-r 3) .

(3.111)

Figures 1.6 and 3.7 show a cocmpari-
son of the outer and composite sclu-
tions in the far and near flelds respec-
tively. To 2{8Y'), the shock loci for
the two solutions are identical. The
sonic loci, lL:wever, are quite dissimi-
lar. Unlike the outer soclution, the
compoeite molution saticfles the condi-
tions at the Prandtl-Meyer ailnguiarity
(see Fig. 3.7). Perhaps the most
striking feature of th composite flow
is the range over which » vdre,
through the inner solutl ., Influiences
the flow., izure 3.8 shows that the
influence propagates in = 50 peactlon
zone lengths. Considering that the
inner scale 3 §Y'y and that §VY?
changes by only a factor cof two fur
0.01 < 42 ¢ ., the range of influecnce
of the inneér solution (in real spuace)
is nearly the same for large and small
values of §. Illowerver, cince the outer
scale 18 8y, the inner solution becomes
relatively morc lmportant aus 6 1c in-
creased. Pijure 3.9 shows that increas=-
ine, 8 from 0.1 to 0.33 makeu the lnner
solution relatiively more important.

1y
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j T"0(8%) Composite Solution '

[ i 4

-2.1
=004

Fig. 7.6 - 0(&8Y*) composite solution.
The s-ock locus (upper curve), cornposite
sonle locus (middle curve), and outer
sonic locus (lower curve) in edge fixed

coordinates.

The parameter values are

D=t mm/us, vy = 3, k = 2 uyg*, and

¢ = 0.1,

0870

L i)

'0( l"'i COMDO'IIM Solution

-0320

-008e

(6™) composite solution.

0(8%) Composita Sohtion

A d Il I

-20.04

-3.08 7.7
dy(mm)

-1.94

Fig. 3.8 - 0(6Y’) composite soluticn.

See Fig. 3.6.

lCXi%;;ouno;Ho SoLNon

1 1 i

p—

-2.0
-2048

-l4.18

-7.88
B8y(mm)

-1.87

-~

Fig. 3.9 - 0(8") composite solutlon.
The parameter values are D = 8 mm/us,
y =3, k=2 ug', and 6§ = 0.33.

15



Bdzil

Although the sonic 1locus is not a
flow zroperty which is physically as
apparsnt as :he snock locus, it 1is of
greatsr importance in determining the
flow. This 1s because only the chemical
energ: released in the subsonic reglon
is efTective in driving the detonation.
It 1s for this reason that proper satis-
faoction of the Prandtl-Meyer condition
is crioial to any calculation. As an
example, conslder the case of an explo-
sive charge of finite size. Inoluding
the ener released in the shad.d area
of Fiz. %yB (unavailable energy) in the
caleculation of the detonation velocity
would lead to a substential errar.

More Important perhaps is the effect
that t“he form of the inner solution has
on the problem of conflnement. Consid-
ering the family of characteristics
emanes:ing from the Prandtl-Meyer singu-
larit:, we find a characteristic (the
limiting characteristic) which is Just
tangent to the sonic locus (see Fig.
3.10). All the characteristiecs leaving
the singularity downstreacm of the limit-
ing characteriatic never contact the
sonic locus. Therefore, information
abou: ocontlnement traveling along them
canncs influence the structure of the
subscrie flow. Put another way, the
limi:ing characteristic defines the
eriti>al degree of confinement below
whichk the cenfinement hae nn ipfluence
on tre structure of the subsonic flow.

L] L v T L T

\ o(s%) Composite Solution
0690+ p

og83

1 (mm)

-0.128

«0833
-0083 =089 -0328 =-0.068
8y(mm)

- —

Fig. 3.10 = 0(8Y?) composite solution.
The shock locus (upper curve), composite
sonic locus (middle curve) and limlting
charz:tcriostic {lower curve) in cdge
fixed coordinates. The pnramoter vAlueasa
are [ = 8 mm/us, vy = 3, k = 2 pg', and

d = C.1,

For the example consi-ered in Fig. 3.10
the critical confinement angle (i.e.,
the angle that the wall makes with the
the x-axis) tor a suf'ficlently smooth
wall 18 1.94°, Por a system with the
parameter valuea glven in Fig. 3.3,
(1.e., increasing & to 0.33) the criti-
cal confinement angle is 6.63°. 1In both
cases, these angles are¢ equal to the
streamline angle at the sonilc point on
the shock. Therefore, we find that the
resolved-§? portion of the reaction
zone for a system with an edge proceeds
a3 an essentially unconfined detonation
unless the confinement is heavy (1.e.,
aluminum or heavier).

F. Summar
ReviewlIng the results of this sec-

tion, we find: (1.) Far from the =dge
(outer region) the flow 1s governed by
0.D.E.'s (with independent varlatles
X, 8y) and the shock boundary condl-
tion3a. The outer problem determine:
the shock locus to 0(8¥') for == < y < C
and the sonic locus in the very far
field. (2.) Near the edge (inner
region) the flow 1s governed by F.L.Z.'s
(with the independent varlatlesz v’SV’.

Jy) and the boundary conditicnz along
the shock locus, at the Prandtl-lieyer
singularity, and tie match 1intc =:e
outer solution. The inner protier.,
which 1s strongly influenced Lv =ie
singularity, has a long ranre lnfluence
on the sonic locus and propertic. wuhlch
depend on it. (3.) The critical :on-
finement angle 19 equal to the an.l1»
that the streanilines at the sonilc point
on the shock make with the edge.

]
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